PARAMETERIZED OPTICAL
VOLUMES

(WIREPLANES, MESHES, ETC)
IN LARSOFT

Ben Jones, MIT

BaCkg rO u n d MicroBooNE wire plane

- A while ago, to reduce simulation
overhead we decided that the G4
simulation for MicroBooNE would not
include a geometrical description of

every wire.

- LArG4 also has no “microscopic” VOOV LULLLYL
definition of the field mesh which sits 80-67-6 WX
between wireplanes and PMTs HIUUYD TN A &

- For optical simulations, wireplanes and
mesh are significant as they absorb
photons, and have nontrivial angular
transmittances.

- This is also an issue for LBNE paddle
detectors, which sit behind wireplane
assemblies.

- In this talk | describe an implementation
of a very general scheme for simulating
partially transparent volumes such as
wireplanes in LArG4.

B
The new code semi-intuitively:

root / trunk / LArG4 / OpParamSD.h

History | View | Annotate | Download (2.5 kB)

NNy
2 /// \file OpParamsD.h

3\//

4 /// \author bjpjonesémit.edu

S /IIIIIIIIIIEIIIIELE LI I LA IR E LA AP0 EE 00000000 iEEElEllEltY
6 //

7 // This class represents a partially opaque, parameterized optical volume.
d 1/

root / trunk / LArG4 / OpParamAction.h

History | View | Annotate | Download (3.2 kB)

1 // OpParamAction.h - Ben Jones, MIT 2013
2//
3 // This header file defines various optically parameterized volume actions.

root / trunk / LArG4 / OpDetReadoutGeometry.h

History | View | Annotate | Download (1.8 kB)

N NNy
2 /// \file OpDetReadoutGeometry.h

3//

4 /// \author bjpjonesémit.edu

S /111IILIIIELIEIELER L0000 0000000 LRl

This is a Geant4 object
which causes a specified
volume to kill photons
according to some model

This file contains several
possible photon killing
models (and is where you
can make new ones)

This object is the part of
LArG4 which interfaces
with Geant4 to do most of
the optical geometry’s
“dirty work”

OpDetReadoutGeometry

- OpDetReadoutGeometry populates a parallel Geant4
world which only optical photons see.

“Real” world

No sensitive detectors

LArVoxelReadoutGeometry

(TPC simulation)

Record energy losses

- Full physical geometry
- Both photons and
particles stepping

LArVoxelReadout

OpDetReadoutGeometry
(Optical simulation)

Record photon detection

OpDetSensitiveDetector

- Voxels for charge

deposit measurement

- Photons do not exist

1

- Separate sensitive
volumes per PMT

- Photons exist

- No other particles exist

B
Adding a New Type of SD

- Now it also places a new type of
sensitive detector, whose only job
Is to selectively kill photons.

- Why make a sensitive detector,
rather than a new G4 physics
process?

- 1. We want this to call for every

photon in the volume, not just after
some mean-free-path

- 2. We want it to only interact with
photons, and not other particles — a
sensitive detector can exist in the
parallel world which only photons

Inhabit
- But we want it to be flexible
enough to implement different
photon killing models for different
objects (wires, meshes, non-
uniform coatings, etc)

L
OpParamSD

- OpParamSD is a G4SensitiveDetector. This is associated to one or more
G4PhysicalVolumes at geometry building time.

- When this is done, it is also given a “photon killing model” called fOpa which
returns a killing probability as a function of photon position or momentum.

- After this any particle stepping into that volume triggers a method of the
OpParamSD, which basically does this:

if (G4BooleanRand(fOpa->GetAttenuationFraction(mom,pos)))
{
// photon survives - let it carry on
fPhotonAlreadyCrossed[aTrack->GetTrackID()];
}

else
{
// photon is absorbed
aStep->GetTrack()->SetTrackStatus(£fStopAndKill);

}

OpParamSD Constructor:

Unique name for this Geant4 SD

Name of photon killing model to use

Object orientation (1=x, 2=y, 3=z)

A

OpParamSD: :OpParamSD(G4String DetectorUniqueName, std::string ModelName, int Orientation,
std: :vector<std::vector<double> > ModelParameters) &

{

Model
parameters (eg

: G4vSensitiveDetector(DetectorUnigqueName)

// Register self with sensitive detector manager
G4SDManager: :GetSDMpointer() ->AddNewDetector(this);

if (ModelName == "SimpleWireplane")
fOpa = new SimpleWireplaneAction(ModelParameters, Orientation);

else if(ModelName == "OverlaidWireplanes")
fOpa = new OverlaidWireplanesAction(ModelParameters, Orientation);

else if(ModelName == "TransparentPlaneAction")
fOpa = new TransparentPlaneAction();

// else if(your model here)

else

{
mf : :LogError("OpParamsSD")<<"Error: Optical parameterization model " << ModelName <<" not fo

assert(0);
}

wire pitches,
diameters)
Choose +
—— setup
opacity
model

OpParamAction

Base class:

1/
// Abstract base class

1/

class OpParamAction

{
public:
OpParamAction();

virtual ~OpParamAction();

private:

}:

Each derived class

virtual double GetAttenuationFraction(G4ThreeVector PhotonDirection, G4ThreeVector PhotonPosition); ove rrldeS thIS

method

Derived classes:

The Wireplane Action Classes

- Models transmittance as a function of incident light angle
on a wireplane of pitch P and wire diameter D

; D D
0 is the angle of the P _ 1l —peosg cos0>p
the ray projected into trans 0 cosf < 2
the plane normal to L
the wires
Absorption
1.0
0.3]
i I i 05|
] Lo -
1 I 1
i I 04f
: 1 D! -
I &>
I I 0.2f
1 1
< >y
: : TM[&_P
15 1.0 0.5 0.0 0.5 1.0 1

L
Configured in LArG4Parameters service

The following parameters specify details of wireplanes or similar Simp'eWireplane

areas with opticall arameterized transmissions (Ben J 2013 : :
oreamd L ‘ ‘ implements a single

volume names to be associated with an optical wireplane model plane

OpticalParamVolumes: ["volTPCPlaneVert PV"] Kill photons in this volume

specification of which model to use for each volume OverIaIdWIrepIanes

OpticalParamModels: ["overlaidwireplanes”] Use overlaid wireplanes model | Implements several

orientation of each wireplane set planes Superposed

0 = Xdrift, 1 = vdrift, 2 = zdrift Blane normal is x (this approximation

OpticalParamOrientations: [0] we use for

This a set of floats which is specific to the particular model used. MICI’OBOONE)

For overlaid wireplanes, should be a vector of vectors of

[plane angle, pitch/mm, wire diameter/mm]

#

This format is chosen to allow for future extensions to the model

for, eg, LBNE wireplane development. Note that all these are

List of model parameters:

Angle P D vectors, can

OpticalParamParameters: {30, 3, 0.15], U parameterize any
[-30, 3, 0.15], v number of different
(o, 3, 0.15], z volumes with different
(%0, 3.5, 0.2], Mesh horizontal (or same) models

[0, 3.5, 0.2]1 1 1 Mesh vertical

Extensions to LBNE

- Wireplane absorption should
be ~trivially implementable in
LBNE using existing model.

- Other applications too: For
example, would be easy to
write an OpParamAction
derived class to model
lightguide attenuation

- Atten function supplied either
as a list of sensitivity vs length,
or some parameterization

- Requires some work, not
necessarily best solution, but
something to think about.

OpParamAction::LGAtten

Attenuation

e

volume

L GAtten::GetAttenuationFraction

(TVector3 mom, TVector3 pos)

Then use measured
reflection coeff in air to
predict shape in argon

—
h=]
2

=
£ 1
2

o

>

E-1

S

[

o

awin|oA apInb 1ybiT

Conclusion

New simulation tools have been added to LArG4 to model
optically parameterized volumes

Single and multiple wireplanes are ready for action. No
need for geometry modifications to use these.

Production jobs are already being run for MicroBooNE.
Extension to LBNE wireplanes should be straightforward.

Possibly wider uses for LBNE (/MicroBooNE?) including
paddle attenuation functions

At some point in next ~2 months | will release a new
version of the optical physics technical manual with this
feature documented.

Until then, if you need help please feel free to contact me.

